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We analyze the optimal delegation problem between a principal and an agent, assuming that the 
latter has state-independent preferences. We demonstrate that if the principal is more risk-averse 
than the agent toward non-status quo options, an optimal mechanism is a veto mechanism. In a 
veto mechanism, the principal uses veto (i.e., maintaining the status quo) to balance the agent’s 
incentives and does not randomize among non-status quo options. We characterize the optimal 
veto mechanism in a one-dimensional setting. In the solution, the principal uses veto only when 
the state surpasses a critical threshold.
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1. Introduction

In many settings of economic and political interest, a principal consults an informed but biased agent while contingent transfers 
between them are infeasible. The principal then specifies a permissible set of options, termed as the delegation set, and allows the 
agent to choose any option from this set. Holmstrom (1980) analyzes the delegation problem when the agent’s utility depends on 
both the chosen option and the realized state. He characterizes the optimal delegation sets, focusing on the case when the delegated 
options form an interval (i.e., interval delegation). There is a large literature following Holmstrom (1980),1 most of which assume 
state-dependent agent preferences and emphasize the optimality of interval delegation.

Nevertheless, in many real-life interactions, agents have state-independent preferences and only care about the final decisions. For 
example, prosecutors may seek their own favorable rulings regardless of the severity of defendants’ crimes, and financial advisors may 
recommend higher-commission products irrespective of their appropriateness. When the agent has state-independent preferences, any 
interval delegation set fails to elicit the agent’s private information and the principal cannot leverage the agent’s expertise through 
interval delegation. On the other hand, interval delegation also seems incompatible with the veto delegation ubiquitous in many 
organizations, where the principal can only either accept the agent’s proposal or reject it in favor of an outside option.

Veto delegation has been widely used in various organizations, especially in the legislative processes and corporate governance. 
In the legislation, veto delegation is known as the closed rule, where constituents can either approve or veto a committee’s proposed 
bill. The closed rule is deemed to constitute a “critical component of managerial power in the U.S. House of Representatives” (Doran, 
2010). In corporate governance, boards of directors often can only disapprove proposals but cannot unilaterally enact new ones. 
More instances of the veto delegation in other organizations are documented in Marino (2007), Mylovanov (2008) and Lubensky and 
Schmidbauer (2018).

Motivated by these observations, we analyze the optimal delegation problem between a principal and an agent where the agent’s 
preference is state-independent. In our model, the principal decides whether to maintain the status quo or choose another option. 
To elicit information from the biased agent, the principal commits to a (possibly stochastic) direct mechanism. We demonstrate that 
a principal’s optimal mechanism must be a veto mechanism, provided that the principal is more risk-averse than the agent regarding 
non-status quo options. The veto mechanism is a specific direct mechanism in which the principal never randomizes among non-

status quo options and only uses veto to balance the agent’s incentives for truth-telling. Our result rationalizes veto delegation as an 
arrangement that achieves the optimal outcome.

1.1. Motivating example

To illustrate our main result, consider a political advisor (agent) advising a policy maker (principal).2 There are two equally likely 
states, 𝜃1 and 𝜃2, and the agent privately observes the realized one. The policy maker decides between a new policy (𝑎1 or 𝑎2) or 
maintaining the status quo policy 𝑎0. The mild policy 𝑎1 is suitable when the state is 𝜃1, and the aggressive policy 𝑎2 is suitable when 
the state is 𝜃2. The principal obtains a payoff of 1 if the enacted new policy is suitable, or −3 otherwise; the status quo 𝑎0 yields a 
constant payoff of 0 for the principal. The advisor’s preference ranks 𝑎2 highest and 𝑎0 lowest, regardless of the state. Suppose the 
advisor’s payoff is 𝑖 when 𝑎𝑖 is chosen for 𝑖 ∈ {0,1,2}. Table 1 shows players’ payoffs for each policy–state combination.

The policy maker’s ex ante optimal choice is 𝑎0 , yielding a payoff of 0 for both players. Can the policy maker elicit information 
from the extremely biased advisor through delegation? The answer is yes. The policy maker can commit to the following mechanism 
where she may accept the advisor’s proposal or use veto (i.e., choosing 𝑎0): if the advisor proposes 𝑎1, the policy maker will approve; 
if 𝑎2 is proposed, the policy maker will approve or veto with equal probabilities. Given the principal’s commitment, the advisor is 
indifferent between proposing either new policy. Suppose the advisor proposes 𝑎𝑖 at each state 𝜃𝑖. Then, the policy maker’s expected 
utility is 3∕4 > 0. The described veto mechanism can be viewed as the policy maker delegating two lotteries to the advisor: 𝑙1 = (1◦𝑎1)
and 𝑙2 = (0.5◦𝑎0,0.5◦𝑎2).3 Therefore, the policy maker benefits from delegating his decisions to the agent when stochastic mechanisms 
are allowed.

One can verify that the described mechanism, while being conceptually simple and relatively easy to implement, yields the highest 
payoff for the principal among all incentive-compatible mechanisms. The key feature of the veto mechanism is that the principal only 

1 We briefly review the literature on optimal delegation in Section 1.2.
2 This example is adapted from the think-tank game in Lipnowski and Ravid (2020), pp. 1632–1634.
3 Throughout this paper we denote a lottery with finite possible outcomes by 𝑙 = (𝑝1◦𝑎1 ,… , 𝑝𝑛◦𝑎𝑛) with ∑𝑛

𝑖=1 𝑝𝑖 = 1, meaning that outcome 𝑎𝑖 occurs with probability 
𝑝𝑖 for each 𝑖∈ {1,… , 𝑛}.
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Table 1
Payoffs of the policy maker and the 
political advisor.

𝑎0 𝑎1 𝑎2
𝜃1 (0,0) (1,1) (−3,2)
𝜃2 (0,0) (−3,1) (1,2)

uses veto to balance the agent’s incentives; that is, she never randomizes between non-status quo options. Later, we demonstrate the 
optimality of the veto mechanism in a general environment. In this sense, our paper contributes to understanding why veto delegation 
is prevalent in various organizations.

1.2. Literature

Our paper is mostly related to the literature on optimal delegation. Starting from Holmstrom (1980), seminal works in this 
literature include Melumad and Shibano (1991), Alonso and Matouschek (2008), Kováč and Mylovanov (2009), Amador and Bagwell 
(2013), Kolotilin and Zapechelnyuk (2019), etc. Variants of the delegation model have been used in political economy (Bendor 
et al., 2001; Krishna and Morgan, 2001), monopoly regulation and organization (Baron and Myerson, 1982; Aghion and Tirole, 
1997), tariff policies (Amador and Bagwell, 2013), etc. Despite the vast body of existing literature, this paper is, to the best of 
our knowledge, the first to explore the one-shot4 optimal delegation problem where the agent has state-independent preferences. 
State-independent agent preferences imply that deterministic mechanisms are generally suboptimal. Specifically, if the agent’s utility 
function is injective, no incentive-compatible deterministic mechanisms can elicit the agent’s private information. The potential non-

optimality of deterministic mechanisms in delegation has been demonstrated in previous studies, such as Kováč and Mylovanov (2009, 
Section 4) and Kartik et al. (2021, Appendix E). In the same paper, Kartik, Kleiner, and Van Weelden also provide a practical real-life 
example of using stochastic delegation in nominating judges.

As we interpret our result as demonstrating the optimality of veto delegation, we discuss the relationship between this paper and 
the growing literature on veto delegation (Dessein, 2002; Marino, 2007; Mylovanov, 2008; Lubensky and Schmidbauer, 2018). The 
above-mentioned works differ from the optimal delegation literature as they focus on specific game forms of veto delegation—the 
agent proposes some option and the principal either accepts it or rejects it for an outside option. Fixing an exogenous outside option, 
Dessein (2002) compares full delegation and veto delegation and shows that full delegation dominates veto delegation as long as the 
conflict of interest is not extreme. Lubensky and Schmidbauer (2018) strengthen the result of Dessein (2002), demonstrating that 
full delegation is superior by explicitly characterizing the most informative veto equilibrium. Marino (2007) challenges Dessein’s 
conclusion and shows the superiority of veto delegation in another setting with different assumptions of players’ preferences and 
prior distribution. Mylovanov (2008) allows the outside option to be chosen endogenously and shows the equivalence of optimal 
delegation and optimal veto delegation. It is worth emphasizing that unlike those works mentioned above, we adopt a mechanism 
design approach and the veto delegation arrangement emerges as the principal’s optimal mechanism. Another important distinction 
is that in the above-mentioned works, the principal decides whether to veto or not after the agent’s proposal; however, in our paper 
the principal commits ex ante to his probability of veto conditional on the agent’s proposal to ensure information provision from the 
extremely biased agent.

Finally, our paper relates to the broader information transmission literature. The assumption of sender (i.e., agent) state-

independent preferences is common in the literature of communication with hard evidence (Glazer and Rubinstein, 2004, 2006; 
Hart et al., 2017) and information design (e.g., the judge-prosecutor game in Kamenica and Gentzkow (2011)). There is also a grow-

ing literature on cheap talk with sender state-independent preferences (Chakraborty and Harbaugh, 2010; Lipnowski and Ravid, 2020; 
Diehl and Kuzmics, 2021). While this assumption is arguably of great empirical relevance, it has rarely been studied in the existing 
delegation literature. This paper therefore fills the gap.

2. Model

There are two players, a principal (he) and a better-informed agent (she). The state 𝜃 follows some full-support distribution 
𝜇∈Δ(Θ), where the state space Θ is a subset of ℝ𝑛 for some positive integer 𝑛. The agent privately observes the realized state. Denote 
by 𝑎 ∈𝐴 a generic option or allocation, where the set of available options 𝐴 is a subset of ℝ𝓁 for some positive integer 𝓁. Principal’s 
and agent’s payoff functions are 𝑢 ∶ 𝐴×Θ→ℝ and 𝑣 ∶ 𝐴→ℝ, respectively. While the principal’s payoffs depend on the realized state, 
the agent’s do not.

Status-quo option Notably, there exists a unique status quo option 𝑎0 ∈ 𝐴, and any option distinct from 𝑎0 is referred as a non-status 
quo option. We interpret choosing 𝑎0 as maintaining the status quo option or allocation. Real-life instances of 𝑎0 include customers 
buying nothing from the intermediaries, investors rejecting the financial products recommended by the financial advisors, and policy 
makers vetoing the political advisors’ proposals for new policies. The principal is assumed to be more risk-averse than the agent toward 
choosing non-status quo options at all states. Formally, for each 𝜃∈Θ, there exists a strictly concave transformation ℎ𝜃 ∶ℝ→ℝ such 
that 𝑢(𝑎, 𝜃) = ℎ𝜃(𝑣(𝑎)) for all 𝑎 ≠ 𝑎0. Additionally, the set 𝑣(𝐴 ⧵ {𝑎0}) = {𝑣(𝑎) ∶ 𝑎 ∈𝐴 and 𝑎 ≠ 𝑎0} is assumed to be connected.

4 Frankel (2016) and Chen (2022) study the dynamic delegation problem with agent state-independent preferences.
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Following the literature on optimal delegation (e.g., Melumad and Shibano, 1991; Martimort and Semenov, 2006; Alonso and 
Matouschek, 2008), we approach the delegation problem from a mechanism design perspective and focus on the principal’s optimal 
mechanism. A direct mechanism is a Borel measurable function 𝑚 ∶ Θ→ Δ(𝐴) such that expected payoffs are integrable. To simplify 
notations, we extend the domains of players’ payoff functions to incorporate stochastic options:

𝑢(𝛼, 𝜃) ∶= ∫
𝐴 

𝑢(𝑎, 𝜃) 𝑑𝛼 and 𝑣(𝛼) ∶= ∫
𝐴 

𝑣(𝑎) 𝑑𝛼

where 𝛼 ∈Δ(𝐴) denotes some stochastic option. A mechanism 𝑚 is incentive compatible if

𝑣(𝑚(𝜃)) ≥ 𝑣(𝑚(𝜃′)) for all 𝜃, 𝜃′∈Θ. (IC)

Constraints (IC) can be reduced to a set of indifference constraints:

𝑣(𝑚(𝜃)) = �̂� for all 𝜃∈Θ and some �̂� ∈ℝ. ()

As the agent’s preference is state-independent, the reduced incentive-compatibility constraints () are also state-independent. That 
is, in an incentive-compatible mechanism, the agent obtains the same utility from any report regardless of the state. Principal’s 
maximization problem is given by:

max 
𝑚, ̂𝑣∈ℝ∫

Θ 
𝑢(𝑚(𝜃), 𝜃) 𝑑𝜇 subject to constraints (). ()

A direct mechanism 𝑚∗ is called an optimal mechanism if (𝑚∗, �̂�∗) solves the problem () where �̂�∗ = 𝑣(𝑚∗(𝜃)) for all 𝜃. The 
solution concept is perfect Bayesian equilibrium (henceforth, equilibrium). One interpretation of our mechanism design approach, as 
in most applied mechanism design papers, is to find an upper bound on the principal’s welfare. Having said that, we also find the 
implementation via veto delegation fitting naturally into various contexts.

2.1. Veto mechanisms

A direct mechanism 𝑚 is a veto mechanism if there exist two mappings, �̃�∶ Θ→ [0,1] and �̃�∶ Θ→ 𝐴 ⧵ {𝑎0}, such that for almost 
every state 𝜃 with respect to the prior distribution 𝜇, the induced stochastic option 𝑚(𝜃) assigns probability �̃�(𝜃) to the status quo 
option 𝑎0 and the complementary probability 1 − �̃�(𝜃) to the non-status quo option �̃�(𝜃). This definition corresponds to the real-life 
veto delegation scenario where the agent proposes some option �̃�(𝜃) and then the principal vetoes that proposal with probability �̃�(𝜃). 
We refer to �̃�(𝜃) as the veto probability. The veto mechanism encompasses all deterministic mechanisms as well as a class of simple 
stochastic mechanisms. In these stochastic mechanisms, whenever the principal makes a random choice, the randomization occurs 
only between the status quo and one other option.

Proposition 1 allows us to focus on veto mechanisms when searching for an optimal mechanism.

Proposition 1. A direct mechanism is optimal only if it is a veto mechanism.

Proof. Principal’s maximization problem () can be solved sequentially. First, fix some agent utility �̂� and solve the following 
optimization problem

𝜋(�̂�) ∶= max
𝑚 ∫

Θ 
𝑢(𝑚(𝜃), 𝜃) 𝑑𝜇 subject to 𝑣(𝑚(𝜃)) = �̂� for all 𝜃. (�̂�)

Then, solve for 𝑣∗ ∈ argmax�̂�∈ℝ 𝜋(�̂�) that maximizes principal’s ex ante payoff. For our purpose here, it suffices to show that for all 
�̂� ∈ 𝑣(𝐴), any direct mechanism �̂� that solves the problem (�̂�) must be a veto mechanism.

Fixing some �̂� ∈ 𝑣(𝐴), mechanism �̂� is a solution to (�̂�) only if, for 𝜇-almost all 𝜃, �̂�(𝜃) solves the following maximization 
problem5:

max 
𝛼∈Δ(𝐴)

𝑢(𝛼, 𝜃) subject to 𝑣(𝛼) = �̂�. (�̂�,𝜃)

Fixing some state 𝜃, the objective function in (�̂�,𝜃) can be written as

𝑢(𝛼, 𝜃) = ∫
𝐴⧵{𝑎0}

𝑢(𝑎, 𝜃) 𝑑𝛼 + 𝑝0𝑢(𝑎0, 𝜃)

where 𝑝0 is the probability assigned to 𝑎0 under 𝛼. Further,

5 Precisely, �̂� is a solution to maximization problem (�̂�) if and only if 𝑣(�̂�(𝜃)) = �̂� for all 𝜃 ∈ Θ and there exists some subset Θ̂ of Θ with 𝜇(Θ̂) = 1 such that �̂�
solves (�̂�,𝜃) for all 𝜃 ∈ Θ̂.
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∫
𝐴⧵{𝑎0}

𝑢(𝑎, 𝜃) 𝑑𝛼 = (1 − 𝑝0) ∫
𝐴⧵{𝑎0}

ℎ𝜃
(
𝑣(𝑎)

)
𝑑
( 𝛼

1 − 𝑝0

)
≤ (1 − 𝑝0)ℎ𝜃

(
∫

𝐴⧵{𝑎0}

𝑣(𝑎) 𝑑
( 𝛼

1 − 𝑝0

))
(because ℎ𝜃 is concave)

= (1 − 𝑝0)ℎ𝜃(𝑣(𝑎′)) for some 𝑎′ ∈𝐴 ⧵ {𝑎0} (because 𝑣(𝐴 ⧵ {𝑎0}) is connected)

= (1 − 𝑝0)𝑢(𝑎′, 𝜃).

Since function ℎ𝜃 is strictly concave, the inequality takes equality if and only if the support of 𝛼 contains at most one option distinct 
from 𝑎0. Therefore, any solution to the problem (�̂�) must be a veto mechanism. □

The optimality of veto mechanisms relies on the assumption that the principal is more risk-averse than the agent towards non-

status quo options. If the principal is less risk-averse than the agent, the optimality of veto mechanisms may fail. Below, we provide 
an example to illustrate this scenario. Suppose Θ = [0,1] ⊆ℝ and 𝐴 = (−∞,1] ∪ {𝑎0} ⊆ℝ, where the status quo option is denoted by 
some real number 𝑎0 > 1. The principal has absolute loss payoff: 𝑢(𝑎, 𝜃) = −|𝑎− 𝜃| for 𝑎 ∈ℝ and 𝑢(𝑎0, 𝜃) = 𝑢0 < 0 for all 𝜃. The agent 
has quadratic loss payoff 𝑣(𝑎) = −(1 − 𝑎)2 for 𝑎 ∈ (−∞,1] and 𝑣(𝑎0) = 𝑣0 ∈ℝ. Then, the principal can achieve an outcome arbitrarily 
close to the first-best outcome without using veto at all.6 For arbitrarily small 𝜀 > 0, given the reported state 𝜃 the principal chooses 
a lottery of actions with expectation being 𝜃 − 𝜀, its support lying in (−∞, 𝜃] and the appropriate variance such that constraints ()

hold.

2.2. Remarks on the status quo option

The proof of Proposition 1 can be extended to show that if the principal is more risk-averse than the agent towards all options at 
all states (and 𝑣(𝐴) is connected), an optimal mechanism must be deterministic. In this case, the principal generally cannot elicit any 
information from the agent due to the state-independent agent preference. Therefore, for the delegation problem to be non-trivial, 
despite the fact that the principal is more risk-averse than the agent towards all non-status quo options at all states, adding the status 
quo option will make the principal no longer more risk-averse than the agent. In other words, some player must have different risk 
attitudes between the status quo option and non-status quo options.

In behavioral economics, it is well-documented that individuals perceive qualitative differences between choosing the status quo 
option and a non-status quo option (e.g., Kahneman and Tversky, 1979). Additionally, individuals often feel more responsible when 
enacting a non-status quo option (Bartling and Fischbacher, 2012). In our motivating example, the policy maker is insensitive to the 
outcome of maintaining the status quo in that choosing 𝑎0 yields the same payoff at both states. One possible reason is that the policy 
maker feels more responsible for the outcome of a non-status quo policy than that of maintaining the status quo.

3. Characterization

We characterize the optimal mechanism in a one-dimensional setting. Assume Θ = [0,1] ⊆ℝ and 𝐴 = {𝑎0}∪ [−𝑀,𝑀] ⊂ℝ, where 
𝑀(> 1) is a sufficiently large positive number and the status quo option is denoted by some real number 𝑎0 < −𝑀 . The state 𝜃 follows 
some full-support distribution 𝜇 ∈ Δ(Θ). Agent’s payoff function is 𝑣(𝑎) = 𝑎 for 𝑎 ∈ [−𝑀,𝑀] and 𝑣(𝑎0) = 𝑣0 ∈ ℝ. Principal’s payoff 
function is 𝑢(𝑎, 𝜃) = −(𝑎 − 𝜃)2 for 𝑎 ∈ [−𝑀,𝑀] and 𝑢(𝑎0, 𝜃) = 𝑢0 for all 𝜃 ∈ Θ. While the principal’s payoffs from a non-status quo 
option depend on the state, those from the status quo option do not.7

We impose the following restrictions. Assume 𝑢0 ≤ 0. Otherwise, the status quo option 𝑎0 always yields the unique highest payoff 
for the principal among all options, and the principal trivially chooses 𝑎0 regardless of the state. We also assume 𝑣0 ≤ 0 when char-

acterizing the optimal mechanism and discussing comparative statics. Later, we show that allowing 𝑣0 being positive can drastically 
affect the optimal mechanism (Section 4).

3.1. Analysis

We first briefly discuss the extreme case when 𝑢0 = 0. In this case, the principal can never do better than opting for the status 
quo option, and there exists a pooling equilibrium in which he maintains the status quo regardless of the state. Nevertheless, there also 
exists a fully separating equilibrium, in which the agent is strictly better off. In the separating equilibrium, the principal commits to the 

6 This almost first-best outcome is essentially the same with the example of non-optimality of deterministic allocations in Kováč and Mylovanov (2009, Section 4). 
A related example can be found in Example E.1 in Kartik et al. (2021).

7 The assumption that principal’s payoffs from 𝑎0 are state-independent aligns with many real-life scenarios. For instance, in a customer-salesperson interaction, the 
customer “delegates” his purchasing decision to the salesperson, and the state captures the degrees to which the available products match the customer’s needs. As the 
value of the alternative use of money for the customer does not depend on how well the products suit her, the payoffs from rejecting the salesperson’s recommendation 
are state-independent. In the literature of contract theory, it is also usually assumed that the value of outside option from not signing the contract is state-independent 
for the principal. For example, in an investor-entrepreneur relationship, the participation constraint requires that the expected return to the investor (principal) must 
cover the opportunity cost of funds, and the opportunity cost is usually measured by a constant interest rate (e.g., Gale and Hellwig, 1985).
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veto mechanism (�̃�∗, �̃�∗) where �̃�∗(𝜃) = 𝜃 and �̃�∗(𝜃) = 𝜃∕(𝜃 − 𝑣0). That is, given the agent’s reported state 𝜃, the principal uses veto 
with probability 𝜃

𝜃−𝑣0
and chooses option �̃�(𝜃) = 𝜃 with the complementary probability. This mechanism is incentive-compatible, and 

the principal’s ex ante payoff is the same as that of the pooling equilibrium. The separating equilibrium is the limit of equilibria with 
𝑢0 < 0, as discussed later.

From now on, assume 𝑢0 < 0. By Proposition 1, we focus on veto mechanisms and the principal’s maximization problem ()

reduces to

max 
{�̃�(𝜃),�̃�(𝜃)}𝜃∈Θ ,�̂�∫

Θ 

(
�̃�(𝜃)𝑢0 − (1 − �̃�(𝜃))(�̃�(𝜃) − 𝜃)2

)
𝑑𝜇

subject to (i) ∀𝜃 ∈Θ, �̃�(𝜃)𝑣0 + (1 − �̃�(𝜃))�̃�(𝜃) = �̂�;

(ii) ∀𝜃 ∈Θ, �̃�(𝜃) ∈ [0,1] and �̃�(𝜃) ∈ [−𝑀,𝑀].

(′)

Perturbing �̃�(𝜃′) and �̃�(𝜃′) at some state 𝜃′ will not impact the validity of constraints () for other states 𝜃 ≠ 𝜃′, as long as the 
agent’s payoff remains fixed at �̂� when reporting 𝜃′. Due to this observation, we first fix some agent utility �̂� and solve the principal’s 
maximization problem state-wisely. Then, we solve for the optimal �̂�.

The original problem (′) is reduced to the following two-step maximization problem:

1. For each 𝜃 ∈Θ and each agent’s utility �̂� ∈ [𝑣0,1], solve the following optimization problem:

𝜋(�̂�, 𝜃) ≡ max 
�̃�(𝜃),�̃�(𝜃)

�̃�(𝜃)𝑢0 − (1 − �̃�(𝜃))(�̃�(𝜃) − 𝜃)2 (1)

subject to (i) �̃�(𝜃)𝑣0 + (1 − �̃�(𝜃))�̃�(𝜃) = �̂�;

(ii) �̃�(𝜃) ∈ [0,1] and �̃�(𝜃) ∈ [−𝑀,𝑀].

2. Solve for the optimal �̂�:

max 
�̂�∈[𝑣0 ,1]∫

Θ 
𝜋(�̂�, 𝜃) 𝑑𝜇. (2)

We solve the sequential problems (1) and (2) using the standard Lagrangian method. The optimal veto mechanism is summarized 
in Proposition 2.

Proposition 2. Assume 𝑣0 ≤ 0.

(a) If (1 − 𝑣0)2 + 𝑢0 > (𝔼𝜇(𝜃) − 𝑣0)2, then define 𝜂(𝜃)≡√
(𝜃 − 𝑣0)2 + 𝑢0 + 𝑣0 for 𝜃 ≥√

−𝑢0 + 𝑣0 and the optimal veto mechanism is

�̃�∗(𝜃) =

{
�̄�, if 𝜃 < �̄�;
𝜂(𝜃), if 𝜃 ≥ �̄�,

�̃�∗(𝜃) =

{
0, if 𝜃 < �̄�;
𝜂(𝜃)−�̄�
𝜂(𝜃)−𝑣0

, if 𝜃 ≥ �̄�,
(1)

where �̄� ≡ 𝜂−1(�̄�) and �̄� is determined by ∫ 1
𝜂−1(�̄�)(𝜂(𝜃) − �̄�) 𝑑𝜇(𝜃) + �̄�− 𝔼𝜇(𝜃) = 0. Moreover, �̄�∈ (0,𝔼𝜇(𝜃)).

(b) If (1 − 𝑣0)2 + 𝑢0 ≤ (𝔼𝜇(𝜃) − 𝑣0)2, then the optimal veto mechanism is characterized by �̃�∗(𝜃) = 𝔼𝜇(𝜃) and �̃�∗(𝜃) = 0 for all 𝜃 ∈Θ; that 
is, the principal chooses 𝔼𝜇(𝜃) regardless of the state.

Proof. See Appendix A.1. □

Since the principal can always choose his ex ante favorite option by trivially delegating a singleton set, he strictly benefits from 
eliciting the agent’s private information when a non-trivial mechanism is optimal, as in Case (a) of Proposition 2. Fig. 1 illustrates 
the optimal veto mechanism in this case: the principal’s choices are pooled at the deterministic action �̄� when the state is below 
the threshold �̄�; when the state is above the threshold �̄�, the principal uses veto with probability 𝜂(𝜃)−�̄�

𝜂(𝜃)−𝑣0
and chooses 𝜂(𝜃) with the 

complementary probability. In Case (b), the principal trivially delegates {𝔼𝜇(𝜃)}.

One interpretation of the non-trivial optimal veto mechanism is through delegating lotteries. The principal delegates a set of 
lotteries {𝑙𝜃}𝜃∈[�̄�,1] to the agent, indexed by 𝜃, where 𝑙𝜃 =

(
�̃�∗(𝜃)◦𝑎0, (1 − �̃�∗(𝜃))◦𝜂(𝜃)

)
for 𝜃 ∈ [�̄�,1]. The agent chooses the lottery 𝑙𝜃

at 𝜃 ∈ [�̄�,1], and chooses 𝑙�̄� otherwise. Another interpretation is through the veto delegation arrangement, where the agent proposes 
an option and the principal either vetoes or approves. Specifically, the principal pre-commits to the following stochastic choice 
contingent on the agent’s proposal: the principal uses veto with probability �̃�∗(𝜂−1(�̂�)) if the proposed option �̂� ∈ [�̄�, 𝜂(1)], always 
approves if �̂� ∈ [0, �̄�] and otherwise always uses veto.

Fig. 1 suggests that both �̃�∗(𝜃) and �̃�∗(𝜃) are increasing over [�̄�,1] and, perhaps surprisingly, that action �̃�∗(𝜃) is strictly lower than 
𝜃 for all 𝜃 > �̄�. We summarize these properties in Corollary 1, which can be verified directly from the corresponding expressions.
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�̃�(𝜃)

�̄�

�̄�

1

1

Action �̃�∗(𝜃).
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�̃�(𝜃)

1

1�̄�

Veto probability �̃�∗(𝜃).

Fig. 1. Optimal veto mechanism. 

Corollary 1. Among all valuable optimal veto mechanisms,

(a) �̃�∗(𝜃) and �̃�∗(𝜃) are weakly increasing in 𝜃;

(b) �̃�∗(𝜃) < 𝜃 for all 𝜃 > �̄�.

Proof. See Appendix A.2. □

The intuition of Corollary 1(a) is as follows. As the state 𝜃 increases, the principal’s preferred option gets higher and thus �̃�∗(𝜃) is 
weakly increasing. On the other hand, to maintain the indifference constraints (), the principal has to veto those higher options with 
higher probabilities. So �̃�∗(⋅) is weakly increasing as well. Corollary 1(b) claims that in the optimal veto mechanism the proposed 
option is always lower than the state, and its intuition is as follows. First let �̃�(𝜃) = 𝜃 for 𝜃 > �̄� and consider a marginal decrease of 
the proposed option. The principal’s utility conditional on not using veto decreases, but that loss is of second-order.8 On the other 
hand, constraints () imply that a lower proposal necessitates a lower veto probability. As the status quo option yields payoffs 𝑢0 < 0
for the principal, the gain from a marginal downward deviation from the state-matching action is first-order. To sum up, it benefits 
the principal to design the options �̃�(𝜃) lower than 𝜃 for 𝜃 > �̄�.

3.2. When are veto mechanisms valuable?

We say a veto mechanism is valuable if it yields a higher payoff for the principal than that of delegating {𝔼𝜇 (𝜃)}. By Proposition 2, 
whether there exists a valuable veto mechanism depends on players’ payoffs from the status quo option, 𝑢0 and 𝑣0, and the mean of 
prior 𝜇.

Effects of 𝑢0 As 𝑣0 ≤ 0, the status quo option 𝑎0 serves as a “punishment device.” That is, the principal uses the status quo option 
to balance the incentives of the agent to select higher options. Proposition 2 implies that the optimal veto mechanism is valuable if 
and only if 𝑢0 > (𝔼𝜇(𝜃) − 𝑣0)2 − (1− 𝑣0)2. Put in other words, the status quo option serves as a valid punishment option only if it does 
not harm the principal that much. Indeed, when 𝑢0 ≤ 2𝑣0 − 1, there does not exist a valuable veto mechanism no matter what the 
principal’s prior belief is. On the other hand, the restriction on 𝑢0 for the existence of valuable veto mechanisms is not severe. It can 
be verified that 𝑎0 can serve as a valid punishment option even when 𝑢0 is significantly less than the principal’s payoff from choosing 
his ex-ante preferred option 𝔼𝜇(𝜃).9

Effects of 𝑣0 The lower bound of 𝑢0 for the existence of a valuable veto mechanism, (𝔼𝜇(𝜃) − 𝑣0)2 − (1 − 𝑣0)2, is increasing in 𝑣0. 
The intuition is that when 𝑣0 gets larger, the degree of punishment by veto becomes less severe for the agent. Then the principal has 
to punish the agent with higher probabilities in order to maintain the constraints (). Therefore, the principal obtains the status quo 
payoff more often, making the veto mechanism harder to sustain.

Effects of prior 𝜇 The optimal veto mechanism is valuable only if 𝑢0 is above the threshold −(1 − 𝑣0)2. In that case, the neces-

sary and sufficient condition for the existence of valuable veto mechanisms can be written more parsimoniously as 𝔼𝜇(𝜃) < 𝜂(1) ≡

8 As the principal’s utility function is quadratic for 𝑎 ∈ [−𝑀,𝑀], the first-order derivative with respect to 𝑎 at 𝑎 = 𝜃 is zero: 𝜕𝑢(𝑎,𝜃)
𝜕𝑎 

|||𝑎=𝜃 = 0 for all 𝜃 > �̄�.

9 For an illustration, let the prior belief be uniform over Θ and set 𝑣0 = 0. Then the status quo option can serve as a valid punishment option as long as 𝑢0 is higher 
than −3∕4, which is less than −1∕12, the principal’s payoff from choosing 𝔼𝜇(𝜃).
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Fig. 2. Pinning down the thresholds �̄� and �̄�. √
(1 − 𝑣0)2 + 𝑢0 + 𝑣0. Fixing 𝑢0 and 𝑣0 (and hence 𝜂(1)), the existence of valuable veto mechanisms depends only on the mean of the 

prior 𝜇. As the principal’s ex-post preferred option is 𝑎 = 𝜃 and the agent always prefers higher actions regardless of the state, a higher 
𝔼𝜇(𝜃) indicates that the two players’ interests are more aligned ex ante. In this sense, Proposition 2 implies that veto mechanisms 
are not valuable when the interests of two players are sufficiently aligned (i.e., 𝔼𝜇 (𝜃) > 𝜂(1)). This finding is in contrast with the Ally 
Principle that greater alignment leads to more discretion in the delegation set.10 In our scenario, the principal leaves no discretion for 
the agent when players’ preferences are sufficiently aligned, but leaves some discretion when preferences are sufficiently misaligned.

In a related paper, Kartik et al. (2021) document the invalidity of Ally Principle in a bargaining environment—a proposer (prin-

cipal) delegates a set of lotteries for a vetoer (agent) to choose from while the vetoer can always choose to maintain the status quo 
besides the delegated options. In Kartik et al. (2021), the opposite of the Ally Principle is true: greater ex-ante alignment tends to make 
the principal leave less discretion for the agent (i.e., the delegation set gets strictly smaller). In a standard optimal delegation setting, 
Alonso and Matouschek (2008, Section 6.4) illustrate that the Ally Principle may fail when the optimal deterministic mechanism is 
not interval delegation. In this paper, the Ally Principle in general does not hold—the delegation set gets neither strictly smaller nor 
bigger as players have greater ex-ante preference alignment.11

A deeper understanding of the effects of 𝜇 can be obtained by closely examining the threshold �̄�. The first-order condition deter-

mining �̄� permits a graphical expression as in Fig. 2, where �̄� and �̄� ≡ 𝜂−1(�̄�) are the exact values that equalize the areas of the two 
shaded regions weighted by distribution 𝜇. Since 𝜂(1)< 1, when the prior distribution 𝜇 puts too much mass on the interval (1− 𝜖,1)
for a sufficiently small 𝜖 > 0, �̄� would be above 𝜂(1) and then the principal delegates {𝔼𝜇(𝜃)}. Therefore, when 𝔼𝜇(𝜃) is sufficiently 
high, there will be no valuable veto mechanisms. 

3.3. Comparative statics

We derive two comparative statics to demonstrate how changes in 𝑢0 and 𝑣0 affect the optimal veto mechanism, focusing exclu-

sively on valuable optimal veto mechanisms.

Proposition 3. Among valuable optimal veto mechanisms, if the value of status quo option for the principal 𝑢0 is lower, then

(a) 𝜂(𝜃) decreases for each possible 𝜃;

(b) �̃�∗(𝜃) decreases whenever �̃�∗(𝜃) > 0;

(c) both �̄� and �̄� increase.

Proof. See Appendix A.3. □

Fig. 3 illustrates how �̃�∗(𝜃) and �̃�∗(𝜃) change as principal’s payoffs from the status quo option vary, with the dashed curves 
representing the case for a higher 𝑢0. The intuition for Proposition 3 is as follows. With a lower 𝑢0, the principal is less willing to 
maintain the status quo, leading to a decrease in the veto probability �̃�∗(𝜃) and an increase in the cutoff �̄�. To maintain the indifference 
constraints (), the principal lowers the actions 𝜂(𝜃). The combination of a higher �̄� and lower 𝜂(𝜃) leads to an increase of �̄�.

10 The Ally Principle has been shown to hold in a number of models in the political economy literature (See Bendor et al. (2001) and the discussions therein). 
Holmstrom (1980) demonstrates that the Ally Principle holds under general conditions when restricting to interval delegations.
11 It is worth noting that in most papers where the Ally Principle holds, the degree of preferences misalignment is measured by some bias parameter and is constant 

across different states. In contrast, both Kartik et al. (2021) and our paper assume one player having state-independent preferences, and thus the degree of (ex-ante) 
preferences alignment is belief-dependent. In the counter-example of Alonso and Matouschek (2008), players’ preference misalignment is not constant across states 
and is larger at higher states.
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Fig. 3. Changes of �̃�∗(𝜃) and �̃�∗(𝜃) when 𝑢0 varies. 
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Fig. 4. Changes of �̃�∗(𝜃) when 𝑣0 varies. 

In Proposition 4, we derive comparative statics concerning the value of the status quo option for the agent. Unlike the case with 
varying 𝑢0, changes of the optimal veto probability function �̃�∗(𝜃) may or may not be uniform as 𝑣0 varies.12

Proposition 4. Among valuable optimal veto mechanisms, if the value of status quo option for the agent 𝑣0 is lower, then

(a) 𝜂(𝜃) increases for each possible 𝜃;

(b) both �̄� and �̄� decrease.

Proof. See Appendix A.4. □

Fig. 4 illustrates how �̃�∗(𝜃) changes as the agent’s payoffs from the status quo option vary, with the dashed curve representing 
the optimal action rule for a higher 𝑣0 . Intuitively, lower 𝑣0 tends to lead to lower agent equilibrium payoff �̄� as the agent’s payoffs 
from the status quo option get lower. Meanwhile, lower 𝑣0 implies that punishment by veto becomes more severe for the agent. To 
maintain the indifference constraints (), the principal tends to increase the separating part of optimal actions 𝜂(𝜃). Since �̄� decreases 
and 𝜂(𝜃) increases, the cutoff state �̄� ≡ 𝜂−1(�̄�) decreases.

Lastly, we briefly discuss the comparative statics regarding the prior belief. One might conjecture that, among valuable optimal veto 
mechanisms, the state cutoff �̄� changes monotonically when usual stochastic orderings (such as first-order stochastic dominance and 
likelihood ratios) are imposed on the prior beliefs. Nevertheless, this does not hold in our setting. In Appendix A.6, we provide numeric 
examples demonstrating that when 𝜇1 dominates 𝜇2 in the sense of likelihood ratio (and hence first-order stochastic dominance), the 
state cutoff induced by prior 𝜇1 can be either higher or lower than that induced by prior 𝜇2.

12 This is illustrated with numerical examples in Appendix A.5.
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Fig. 5. Optimal veto mechanism when 𝑣0 ≥ 1. 

4. Discussions

In the previous analysis, we have assumed 𝑣0 ≤ 0. In this section, we discuss how a positive 𝑣0 will affect the optimal mechanism. 
When 𝑣0 ≥ 1, the optimal mechanism resembles that of our main model, with the key difference being that 𝑎0 acts as a reward rather 
than a punishment option. However, when 0 < 𝑣0 < 1, the structure of the optimal mechanism may change significantly.

4.1. Scenario 1: 𝑣0 ≥ 1

Suppose 𝑣0 ≥ 1. Then the status quo option serves as a reward option rather than a punishment option. As Proposition 1 does 
not depend on the value of 𝑣0, we can still focus on the class of veto mechanisms and derive for the optimal mechanism by solving 
sequential maximization problems (1) and (2) as in the main model. The only difference is that now the agent prefers the status 
quo option and 𝑣0 becomes the upper bound for the agent’s equilibrium payoff, whereas in the previous analysis 𝑣0 is the lower 
bound. The following proposition summarizes the optimal veto mechanism in this case.

Proposition 5. Assume 𝑣0 ≥ 1.

(a) If (𝑣0 − 𝔼𝜇(𝜃))2 < 𝑣20 + 𝑢0, define 𝜑(𝜃)≡ 𝑣0 −
√
(𝑣0 − 𝜃)2 + 𝑢0 for 𝜃 ≤ 𝑣0 −

√
−𝑢0 and the optimal veto mechanism (�̃�∗(𝜃), �̃�∗(𝜃)) is

�̃�∗(𝜃) =

{
𝜑(𝜃), if 𝜃 < �̄�

�̄�, if 𝜃 ≥ �̄�
�̃�∗(𝜃) =

{
�̄�−𝜑(𝜃) 
𝑣0−𝜑(𝜃)

, if 𝜃 < �̄�

0, if 𝜃 ≥ �̄�

where �̄� = 𝜑−1(�̄�) and �̄� is determined by ∫ 𝜑−1(�̄�)
0 (𝜑(𝜃) − �̄�) 𝑑𝜇 + �̄�− 𝔼𝜇(𝜃) = 0. Moreover, �̄�∈ (𝔼𝜇(𝜃),1).

(b) If (𝑣0 − 𝔼𝜇(𝜃))2 ≥ 𝑣20 + 𝑢0, then the optimal veto mechanism is �̃�∗(𝜃) = 𝔼𝜇(𝜃) and �̃�∗(𝜃) = 0; that is, the principal chooses the action 
𝔼𝜇(𝜃) regardless of the state.

Proof. See Appendix A.7. □

Fig. 5 illustrates the valuable optimal veto mechanism when 𝑣0 ≥ 1: the principal uses veto only when the state is below the 
threshold �̄�, and those corresponding actions �̃�∗(𝜃) are higher than 𝜃. Also, as opposed to the case of 𝑣0 ≤ 0, there exists no valuable 
veto mechanism when 𝔼𝜇(𝜃) is sufficiently low (i.e., when players’ preferences are sufficiently misaligned ex ante).

4.2. Scenario 2: 𝑣0 ∈ (0,1)

When 𝑣0 ∈ (0,1), solving for the optimal mechanism generally becomes more complicated. Here, we characterize the optimal veto 
mechanism in two specific cases, where the solutions differ significantly from those in Propositions 2 and 5.

Let 𝑣0 = 0.38, 𝑢0 = −0.1 and the prior belief be the uniform distribution over Θ. The optimal action function �̃�∗(𝜃) and the optimal 
veto rule �̃�∗(𝜃) are U-shaped13:

13 Substituting the values of 𝑣0 and 𝑢0 into the expression of 𝜂(𝜃) as defined in Proposition 2 yields 𝜂(𝜃) =
√
(𝜃 − 0.38)2 − 0.1 + 0.38 in this case.

Games and Economic Behavior 150 (2025) 215–234 

224 



X. Hu and H. Lei 

0 𝜃

�̃�(𝜃)

�̄�

1

𝜃 �̄� 1

(a) Action �̃�∗(𝜃)

0 𝜃

�̃�(𝜃)

1

1𝜃 �̄�

(b) Optimal veto probability �̃�∗(𝜃)

Fig. 6. U-shaped �̃�∗(𝜃) and �̃�∗(𝜃). 

�̃�∗(𝜃) =
⎧⎪⎨⎪⎩
𝜂(𝜃) if 𝜃 ∈ [0, 𝜃);
�̄� if 𝜃 ∈ [𝜃, �̄�);
𝜂(𝜃) if 𝜃 ∈ [�̄�,1],

�̃�∗(𝜃) =
⎧⎪⎨⎪⎩

𝜂(𝜃)−�̄�
𝜂(𝜃)−𝑣0

if 𝜃 ∈ [0, 𝜃);

0 if 𝜃 ∈ [𝜃, �̄�);
𝜂(𝜃)−�̄�
𝜂(𝜃)−𝑣0

if 𝜃 ∈ [�̄�,1],

where the approximate values are given by 𝜃 ≈ 0.063, �̄� ≈ 0.697 and �̄�≈ 0.397. To obtain this result, we first divide the problem into 
two categories, �̂� ≥ 𝑣0 and �̂� ≤ 𝑣0, where �̂� is the agent’s expected payoff. For each case, we employ the two-step method to solve 
(1) and (2) sequentially. We find that it is optimal for the principal to set �̂� ≥ 𝑣0, and thus the status quo option serves as a stick 
rather than a carrot. Detailed derivations are relegated to Appendix A.8.1.

Fig. 6 illustrates the optimal veto mechanism: both �̃�∗(𝜃) and �̃�∗(𝜃) are U-shaped and the principal uses veto at both the higher 
and the lower states. Note that when 𝜃 < 𝜃, the principal’s payoffs from those actions �̃�∗(𝜃) are lower than that from the pooling 
action �̄�, yet the principal finds it optimal to take these higher actions. The reason for this phenomenon is as follows. When 𝜃 ∈ [0, 𝜃], 
principal’s payoff from the pooling action �̄� is lower than 𝑢0. It follows that the principal has incentives to put more probability 
weight on the status quo option. As a result, the principal must also set �̃�(𝜃) higher than �̄� to maintain the indifference constraints 
().

As a final illustration, let 𝑣0 = 1
2 , 𝑢0 > −1

4 and the prior belief be the uniform distribution over Θ. In this case, the optimal 
mechanism is deterministic:

(�̃�∗(𝜃), �̃�∗(𝜃)) =

{
(𝑣0,0) when 𝜃 ∈ [𝑣0 −

√
−𝑢0, 𝑣0 +

√
−𝑢0)

(𝑎′,1) otherwise 

where 𝑎′ can be any non-status quo option distinct from 𝑣0. In other words, the principal always vetoes unless the proposed option 
is 𝑎 = 𝑣0. Detailed derivations are relegated to Appendix A.8.2.

5. Concluding remarks

This paper is motivated by the observation that both private and public organizations often use veto delegation to align incentives 
between principals and agents. We study an optimal delegation model in which it is optimal for the principal to use veto to elicit 
information from the agent. Our findings have implications for corporate governance and legislative studies, where veto delegation 
is prevalent.

The optimality of veto mechanisms hinges on two key assumptions: state-independent agent preferences and the principal being 
more risk-averse than the agent towards non-status quo options. Further investigation into how the optimality of veto mechanisms 
depends on these conditions could be valuable. Additionally, we have made simplifying assumptions about players’ payoff functions 
when characterizing the optimal mechanism. Relaxing these assumptions and exploring the optimal mechanism under different 
conditions could prove worthwhile for future research.

Declaration of competing interest

The authors Xiaoxiao Hu and Haoran Lei declare that they have no relevant or material financial interests that relate to the 
research described in this paper.

Appendix A

The Appendix contains the proofs and derivations which have been omitted from the main text.
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0 𝜃

�̃�(𝜃)

𝑣0

𝜂(0)

1

𝜂(1)

1

𝜂(𝜃)

(a) �̂�∈ [𝑣0, 𝜂(0)]

0 𝜃

�̃�(𝜃)

𝑣0

𝜂(0)

�̂�

𝜂−1(�̂�)

1

𝜂(1)

1

𝜂(𝜃)

(b) �̂� ∈ [𝜂(0), 𝜂(1)]

0 𝜃

�̃�(𝜃)

𝑣0

𝜂(0)

�̂�

1

𝜂(𝜃)

(c) �̂�∈ [𝜂(1),1].

Fig. 7. Principal’s �̃�∗(𝜃) for different �̂� when 𝑢0 + 𝑣20 ≥ 0. 

A.1. Proof of Proposition 2

We first solve the maximization problem (1) at state 𝜃 for some fixed agent utility �̂�. Constraints () yield:

�̃�(𝜃) = �̃�(𝜃) − �̂�

�̃�(𝜃) − 𝑣0
. (2)

Equation (2) implies that �̃�(𝜃) ≤ 1 is equivalent to �̂� ≥ 𝑣0 and that �̃�(𝜃) ≥ 0 is equivalent to �̂� ≤ �̃�(𝜃). Substitute Equation (2) into 
principal’s utility function, and problem (1) is reduced to:

max 
�̃�(𝜃)∈[−𝑀,𝑀]

(
�̃�(𝜃) − �̂�

�̃�(𝜃) − 𝑣0

)
𝑢0 −

( �̂�− 𝑣0
�̃�(𝜃) − 𝑣0

)
(�̃�(𝜃) − 𝜃)2 subject to �̃�(𝜃) ≥ �̂�. (3)

The solution to problem (3) is

�̃�∗(𝜃) =

{
max{�̂�, 𝜂(𝜃)} if (𝜃 − 𝑣0)2 + 𝑢0 ≥ 0
�̂� otherwise 

(4)

where 𝜂(𝜃) =
√
(𝜃 − 𝑣0)2 + 𝑢0 + 𝑣0.

Then, we solve for the optimal �̂� at state 𝜃 given the action rule specified by Equation (4). Specifically, we derive the optimal �̂�
for different values of 𝑢0 and 𝑣0 in the following scenarios:

I. 𝑢0 + 𝑣20 ≥ 0. In this scenario, 𝑢0 + (𝜃 − 𝑣0)2 ≥ 0 for all 𝜃 ∈Θ.

II. 𝑢0 + 𝑣20 < 0 and 𝑢0 + (1 − 𝑣0)2 > 0. In this scenario, 𝑢0 + (𝜃 − 𝑣0)2 < 0 for 𝜃 ∈ [0,
√
−𝑢0 + 𝑣0) and 𝑢0 + (𝜃 − 𝑣0)2 ≥ 0 for 𝜃 ∈

[
√
−𝑢0 + 𝑣0,1].

III. 𝑢0 + (1 − 𝑣0)2 ≤ 0. In this scenario, 𝑢0 + (𝜃 − 𝑣0)2 ≤ 0 for all 𝜃 ∈Θ.

Scenario I: 𝑢0 + 𝑣20 ≥ 0

We first explicitly write out principal’s optimal action �̃�∗(𝜃) specified by Equation (4) for three different ranges of �̂� (Fig. 7), and then 
find the optimal �̂� within each range. Finally, we compare the solutions in different ranges and find the global maximum. 

When �̂� ∈ [𝑣0, 𝜂(0)], principal’s optimal action is �̃�∗(𝜃) = 𝜂(𝜃), and the veto probability is �̃�∗(𝜃) = 𝜂(𝜃)−�̂�
𝜂(𝜃)−𝑣0

. Principal’s optimization 
problem is reduced to

max
�̂�≥0 Γ1(�̂�) ≡

1 

∫
0 

(
𝜂(𝜃) − �̂�

𝜂(𝜃) − 𝑣0

)
𝑢0 −

( �̂�− 𝑣0
𝜂(𝜃) − 𝑣0

)
(𝜂(𝜃) − 𝜃)2 𝑑𝜇.

Since Γ′1(�̂�) = 2 ∫ 1
0 (𝜃−𝑣0)−

√
(𝜃 − 𝑣0)2 + 𝑢0 𝑑𝜇 > 0 for all �̂� ∈ [𝑣0, 𝜂(0)], the objective function Γ1(�̂�) attains its maximum at �̂�∗ = 𝜂(0).

When �̂� ∈ [𝜂(0), 𝜂(1)], principal’s optimal action is

�̃�∗(𝜃) =

{
�̂�, if 𝜃 ≤ 𝜂−1(�̂�);
𝜂(𝜃), if 𝜃 > 𝜂−1(�̂�),
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and the veto probability is

�̃�∗(𝜃) =

{
0, if 𝜃 ≤ 𝜂−1(�̂�);
𝜂(𝜃)−�̂�
𝜂(𝜃)−𝑣0

, if 𝜃 > 𝜂−1(�̂�).

Principal’s maximization problem is reduced to

max
�̂�

Γ2(�̂�) ≡
𝜂−1(�̂�)

∫
0 

−(�̂�− 𝜃)2 𝑑𝜇 +

1 

∫
𝜂−1(�̂�)

[(
𝜂(𝜃) − �̂�

𝜂(𝜃) − 𝑣0

)
𝑢0 −

( �̂�− 𝑣0
𝜂(𝜃) − 𝑣0

)
(𝜂(𝜃) − 𝜃)2

]
𝑑𝜇

The first-order derivative is Γ′2(�̂�) = −2
(∫ 1

𝜂−1(�̂�) 𝜂(𝜃) − �̂� 𝑑𝜇 + �̂�− 𝔼𝜇(𝜃)
)

. To find the sign of Γ′2(�̂�), first note that Γ′2(�̂�) is decreasing: 

Γ′′2 (�̂�) = −2 ∫ 𝜂−1(�̂�)
0 1 𝑑𝜇 < 0. At the two end points 𝜂(0) and 𝜂(1), we have Γ′2(𝜂(0)) = −2 ∫ 1

0 𝜂(𝜃) − 𝜃 𝑑𝜇 > 0 and Γ′2(𝜂(1)) = −2(𝜂(1) −
𝔼𝜇(𝜃)). Then,

1. when 𝜂(1) ≤ 𝔼𝜇(𝜃), we have Γ′2(𝜂(1)) ≥ 0 and the solution is �̂�∗ = 𝜂(1);
2. when 𝜂(1) > 𝔼𝜇(𝜃), we have Γ′2(𝜂(1)) < 0 and the solution is �̂�∗ = �̄� where �̄� is determined by Γ′2(�̄�) = 0.

Furthermore,

Γ′2(0) = −2
⎛⎜⎜⎜⎝

1 

∫
𝜂−1(0)

𝜂(𝜃) 𝑑𝜇 − 𝔼𝜇(𝜃)
⎞⎟⎟⎟⎠ = 2

⎛⎜⎜⎜⎝
1 

∫
𝜂−1(0)

𝜃 − 𝜂(𝜃) 𝑑𝜇 +

𝜂−1(0)

∫
0 

𝜃 𝑑𝜇

⎞⎟⎟⎟⎠ > 0,

Γ′2(𝔼𝜇(𝜃)) = −2
⎛⎜⎜⎜⎝

1 

∫
𝜂−1(𝔼𝜇 (𝜃))

𝜂(𝜃) − 𝔼𝜇(𝜃) 𝑑𝜇
⎞⎟⎟⎟⎠ < 0.

Since Γ′′2 (�̂�) < 0, we have �̄� ∈ (0,𝔼𝜇(𝜃)).
Lastly, when �̂� ∈ [𝜂(1),1], principal’s optimal action is �̃�∗(𝜃) = �̂� and the veto probability is �̃�∗(𝜃) = 0. Principal’s optimization 

problem is reduced to

max
�̂�

Γ3(�̂�) ≡ −

1 

∫
0 

(�̂�− 𝜃)2 𝑑𝜇.

The first-order derivative is Γ′3(�̂�) = −2
(
�̂�− 𝔼𝜇(𝜃)

)
. Note that Γ′′3 (�̂�) = −2 < 0 and at the two end points we have:

Γ′3(1) = −2
(
1 − 𝔼𝜇(𝜃)

)
< 0, Γ′3(𝜂(1)) = −2

(
𝜂(1) − 𝔼𝜇(𝜃)

)
.

Then,

1. when 𝜂(1) ≤ 𝔼𝜇(𝜃), we have Γ′3(𝜂(1)) ≥ 0 and the solution is �̂�∗ = 𝔼𝜇(𝜃);
2. when 𝜂(1) > 𝔼𝜇(𝜃), we have Γ′3(𝜂(1)) < 0 and the solution is �̂�∗ = 𝜂(1).

To conclude, when 𝜂(1) ≤ 𝔼𝜇(𝜃), the optimal agent utility levels within the three ranges are given by:

�̂�∗ =
⎧⎪⎨⎪⎩
𝜂(0) if �̂� ∈ [𝑣0, 𝜂(0)]
𝜂(1) if �̂� ∈ [𝜂(0), 𝜂(1)]
𝔼𝜇(𝜃) if �̂� ∈ [𝜂(1),1]

Otherwise,

�̂�∗ =
⎧⎪⎨⎪⎩
𝜂(0) if �̂� ∈ [𝑣0, 𝜂(0)]
�̄� if �̂� ∈ [𝜂(0), 𝜂(1)]
𝜂(1) if �̂� ∈ [𝜂(1),1]

where �̄� is the solution to Γ′2(�̄�) = 0.

Since the ranges overlap at the corner, we directly compare the solutions in the three ranges. The solution to Scenario I is as 
follows:

1. If 𝜂(1) ≤ 𝔼𝜇(𝜃), we have �̂�∗ = 𝔼𝜇(𝜃) and the optimal action is �̃�∗(𝜃) = 𝔼𝜇(𝜃) for all 𝜃.
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(b) �̂� ∈ [𝜂(1),1].

Fig. 8. Principal’s �̃�∗(𝜃) for different �̂� when 𝑢0 + 𝑣20 < 0 and 𝑢0 + (1 − 𝑣0)2 > 0. 

2. If 𝜂(1) > 𝔼𝜇(𝜃), we have �̂�∗ = �̄� where �̄� is given by Γ′2(�̄�) = 0 and the optimal action is as follows: when 𝜃 ∈ [0, 𝜂−1(�̄�)], �̃�∗(𝜃) = �̄�; 
when 𝜃 ∈ (𝜂−1(�̄�),1], �̃�∗(𝜃) = (�̃�∗(𝜃)◦𝑎0, (1 − �̃�∗(𝜃))◦𝜂(𝜃)) where �̃�∗(𝜃) = 𝜂(𝜃)−�̄�

𝜂(𝜃)−𝑣0
.

Scenario II: 𝑢0 + 𝑣20 < 0 and 𝑢0 + (1 − 𝑣0)2 > 0

Fig. 8 illustrates the two possibles cases of this scenario: �̂� ∈ [𝑣0, 𝜂(1)] and �̂� ∈ [𝜂(1),1]. The derivation is similar to that of Scenario I 
(and therefore omitted), and the solution is the same as that of Scenario I.

Scenario III: 𝑢0 + (1 − 𝑣0)2 ≤ 0

In this scenario, principal’s optimal action as described in Equation (4) is reduced to �̃�∗(𝜃) = �̂� for all 𝜃 ∈ [0,1], and the veto probability 
is �̃�∗(𝜃) = 0. Principal’s maximization problem is reduced to

max
�̂�

−

1 

∫
0 

(�̂�− 𝜃)2 𝑑𝜇

The first-order condition yields:

−

1 

∫
0 

2(�̂�− 𝜃) 𝑑𝜇 = 0 ⟹ �̂�∗ = 𝔼𝜇(𝜃)

So, the optimal action is �̃�∗(𝜃) = 𝔼𝜇(𝜃) for all 𝜃.

Proposition 2 summarizes the three scenarios. Scenarios I and II are combined as they yield the same solution, with the overall 
prerequisite being 𝑢0 + (1 − 𝑣0)2 > 0. Additionally, the condition 𝜂(1) ≤ 𝔼𝜇(𝜃) is equivalent to 𝑢0 + (1 − 𝑣0)2 ≤ (𝔼𝜇(𝜃) − 𝑣0)2.

A.2. Proof of Corollary 1

Suppose the optimal veto mechanism is valuable. Then it has the semi-separating form as below:

1. When 𝜃 ∈ [0, 𝜂−1(�̄�)], �̃�∗(𝜃) = �̄� and �̃�∗(𝜃) = 0.

2. When 𝜃 ∈ (𝜂−1(�̄�),1], �̃�∗(𝜃) = 𝜂(𝜃) =
√
(𝜃 − 𝑣0)2 + 𝑢0 + 𝑣0. Taking derivative with respect to 𝜃 yields:

𝜂′(𝜃) =
𝜃 − 𝑣0√

(𝜃 − 𝑣0)2 + 𝑢0
> 0.

Taking derivative of �̃�∗(𝜃) = 𝜂(𝜃)−�̄�
𝜂(𝜃)−𝑣0

with respect to 𝜃 gives

�̃�∗′(𝜃) =
𝜂′(𝜃)(𝜂(𝜃) − 𝑣0) − 𝜂′(𝜃)(𝜂(𝜃) − �̄�)

(𝜂(𝜃) − 𝑣0)2
=

𝜂′(𝜃)(�̄�− 𝑣0)
(𝜂(𝜃) − 𝑣0)2

> 0.
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Therefore, �̃�∗(𝜃) and �̃�∗(𝜃) are constant over 𝜃 ∈ [0, 𝜂−1(�̄�)] and are strictly increasing over 𝜃 ∈ (𝜂−1(�̄�),1].
As for part (b), fix some 𝜃 ∈ (𝜂−1(�̄�),1]. Since 𝑢0 < 0, we have 

√
(𝜃 − 𝑣0)2 + 𝑢0 < 𝜃−𝑣0. Therefore, 𝜂(𝜃) =

√
(𝜃 − 𝑣0)2 + 𝑢0 +𝑣0 < 𝜃.

A.3. Proof of Proposition 3

Recall 𝜂(𝜃) =
√
𝑢0 + (𝜃 − 𝑣0)2 + 𝑣0. Partial derivative of 𝜂(𝜃) with respect to 𝑢0 gives

𝜕𝜂(𝜃)
𝜕𝑢0

= 1 
2
√
𝑢0 + (𝜃 − 𝑣0)2

> 0 for all 𝜃 ∈ [0,1].

Therefore, 𝜂(𝜃) increases with 𝑢0 for all 𝜃 ∈ [0,1].
For �̄�, recall that �̄� is obtained by:

1 

∫
𝜂−1(�̄�)

𝜂(𝜃) − �̄� 𝑑𝜇 + �̄�− 𝔼(𝜃) = 0.

Taking partial derivative with respect to 𝑢0 yields:

1 

∫
𝜂−1(�̄�)

𝜕𝜂(𝜃)
𝜕𝑢0

𝑑𝜇 +

𝜂−1(�̄�)

∫
0 

𝜕�̄�

𝜕𝑢0
𝑑𝜇 = 0.

Since 𝜕𝜂(𝜃)
𝜕𝑢0

> 0 for all 𝜃 ∈ [0,1], we obtain 𝜕�̄�

𝜕𝑢0
< 0.

For �̃�∗(𝜃), recall that �̃�∗(𝜃) = 1 − �̄�−𝑣0
𝜂(𝜃)−𝑣0

. Taking derivative with respect to 𝑢0 gives

𝜕�̃�∗(𝜃)
𝜕𝑢0

= −
⎛⎜⎜⎝

𝜕�̄�

𝜕𝑢0
(𝜂(𝜃) − 𝑣0) − (�̄�− 𝑣0)

𝜕𝜂(𝜃)
𝜕𝑢0

(𝜂(𝜃) − 𝑣0)2

⎞⎟⎟⎠ .
Since 𝜕�̄�

𝜕𝑢0
< 0, 𝜂(𝜃) − 𝑣0 > 0, �̄�− 𝑣0 > 0 and 𝜕𝜂(𝜃)

𝜕𝑢0
> 0, we have 𝜕�̃�

∗(𝜃)
𝜕𝑢0

> 0.

A.4. Proof of Proposition 4

Recall 𝜂(𝜃) =
√
𝑢0 + (𝜃 − 𝑣0)2 + 𝑣0. Partial derivative of 𝜂(𝜃) with respect to 𝑣0 yields:

𝜕𝜂(𝜃)
𝜕𝑣0

= −

(
𝜃 − 𝑣0√

(𝜃 − 𝑣0)2 + 𝑢0
− 1

)
< 0 for all 𝜃 ∈ [0,1].

As for �̄�, recall that it is obtained by the FOC. Letting Γ′2 equal to 0 yields:

1 

∫
𝜂−1(�̄�)

(𝜂(𝜃) − �̄�) 𝑑𝜇 + �̄�− 𝔼(𝜃) = 0.

Taking partial derivative with respect to 𝑣0 yields:

1 

∫
𝜂−1(�̄�)

𝜕𝜂(𝜃)
𝜕𝑣0

𝑑𝜇 +

𝜂−1(�̄�)

∫
0 

𝜕�̄�

𝜕𝑣0
𝑑𝜇 = 0.

As we have established that 𝜕𝜂(𝜃)
𝜕𝑣0

< 0 for all 𝜃 ∈ [0,1], 𝜕�̄�

𝜕𝑣0
> 0 follows.

A.5. Veto probability �̃�∗(𝜃) may not change uniformly as 𝑣0 varies

We use two numeric examples to illustrate that 𝑝∗(𝜃) may or may not change uniformly when 𝑣0 varies.

1. Suppose the density function is 𝑔(𝜃) = 1 for 𝜃 ∈Θ and 𝑢0 = −0.9. Consider the two cases: 𝑣0 = −0.9 and 𝑣′0 = −0.3. It follows from 
Proposition 2 that 𝑝∗(𝜃) weakly decreases for all 𝜃 ∈ Θ as 𝑣0 increases to 𝑣′0. The left panel of Fig. 9 illustrates this, where the 
dashed and solid curves represent the optimal veto probability under 𝑣0 and 𝑣′0 respectively.

2. Suppose the density function 𝑔(𝜃) = 1 for 𝜃 ∈ Θ and 𝑢0 = −0.2. Consider the two cases: 𝑣0 = −0.5 and 𝑣′0 = −0.3. When the 
status quo option increases from 𝑣0 to 𝑣′0, the optimal veto probability at state 𝜃 = 1 increases from around 0.42 to around 0.47. 
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0 𝜃

�̃�(𝜃)

1

1�̄�′�̄�
0 𝜃

�̃�(𝜃)

1

1�̄�′�̄�

Fig. 9. Changes of �̃�∗(𝜃) when 𝑣0 varies. 

Meanwhile, the cutoff also increases from �̄� ≈ 0.44 to �̄�′ ≈ 0.49. The right panel of Fig. 9 illustrates this, where the dashed and 
solid curves represent the optimal veto probability under 𝑣0 and 𝑣′0 respectively.

A.6. Insufficiency of the likelihood ratio conditions

We use numeric examples to illustrate that a higher likelihood ratio cannot guarantee either a higher or a lower �̄�. First, consider 
two distributions on Θ= [0,1] with density functions 𝑔𝐿 and 𝑔𝐻 as follows:

𝑔𝐿(𝜃) =

{
1∕3 if 𝜃 ∈ [0,0.9];
140(1 − 𝜃) if 𝜃 ∈ (0.9,1].

𝑔𝐻 (𝜃) =

{
1∕3 if 𝜃 ∈ [0,0.9];
140(𝜃 − 0.9) if 𝜃 ∈ (0.9,1].

It follows that 𝑔𝐻 dominates 𝑔𝐿 in the sense of likelihood ratio. Fixing 𝑢0 = −0.2 and 𝑣0 = −0.6, the corresponding threshold values 
are �̄�𝐻 ≈ 0.647 and �̄�𝐿 ≈ 0.652. So �̄�𝐻 < �̄�𝐿.

On the other hand, consider two density functions �̂�𝐿 and �̂�𝐻 as follows:

�̂�𝐿(𝜃) = 1 and �̂�𝐻 (𝜃) = 10𝜃9,∀𝜃 ∈ [0,1].

It follows that �̂�𝐻 dominates �̂�𝐿 in the sense of likelihood ratio. Fixing 𝑢0 = −0.2 and 𝑣0 = −0.6, the corresponding threshold values 
are �̄�′

𝐻
≈ 0.970 and �̄�′

𝐿
≈ 0.424. So �̄�′

𝐻
> �̄�′

𝐿
.

A.7. Proof of Proposition 5

The proof of Proposition 5 is similar to that of Proposition 2.

Step 1: Pointwise Optimization

Fixing �̂� ≤ 𝑣0, constraints () imply

�̃�(𝜃) = �̂�− �̃�(𝜃) 
𝑣0 − �̃�(𝜃)

. (5)

Equation (5) implies that �̃�(𝜃) ≤ 1 is equivalent to �̂� ≤ 𝑣 and that �̃�(𝜃) ≥ 0 is equivalent to �̂� ≥ �̃�(𝜃). Substituting Equation (5) into the 
principal’s utility, the optimization problem (1) is reduced to

max 
�̃�(𝜃)∈𝐴

(
�̂�− �̃�(𝜃) 
𝑣0 − �̃�(𝜃)

)
𝑢−

( 𝑣0 − �̂�

𝑣0 − �̃�(𝜃)

)
(�̃�(𝜃) − 𝜃)2

subject to �̃�(𝜃) ≤ �̂�,∀𝜃 ∈Θ.
(6)

The solution to problem (6) is

�̃�∗(𝜃) =

{
�̂� if (𝑣0 − 𝜃)2 + 𝑢0 < 0,
min{�̂�, 𝜑(𝜃)} otherwise 

(7)

where 𝜑(𝜃) = 𝑣0 −
√
(𝑣0 − 𝜃)2 + 𝑢0.
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Step 2: Optimal �̂�

Based on Equation (7), we derive the optimal �̂� for different values of 𝑢0 and 𝑣0 characterized by the following three cases:

(i) 𝑢0 + (𝑣0 − 1)2 ≥ 0. In this case, 𝑢0 + (𝑣0 − 𝜃)2 ≥ 0 for all 𝜃 ∈ [0,1].
(ii) 𝑢0+𝑣20 > 0 and 𝑢0+(𝑣0−1)2 < 0. In this case, 𝑢0+(𝑣0−𝜃)2 ≥ 0 for 𝜃 ∈ [0,

√
−𝑢0+𝑣0] and 𝑢0+(𝜃−𝑣0)2 < 0 for 𝜃 ∈ (

√
−𝑢0+𝑣0,1].

(iii) 𝑢0 + 𝑣20 ≤ 0. In this case, 𝑢0 + (𝑣0 − 𝜃)2 ≤ 0 for all 𝜃 ∈ [0,1].

The solutions of case (i) and case (ii) are the same:

1. If 𝜑(0) ≥ 𝔼𝜇(𝜃), �̂�∗ = 𝔼𝜇(𝜃). The actions are pooled at �̃�(𝜃) = 𝔼𝜇(𝜃).
2. If 𝜑(0) < 𝔼𝜇(𝜃), �̂�∗ = �̄� where �̄� is given by

𝜑−1(�̄�)

∫
0 

𝜑(𝜃) − �̄� 𝑑𝜇 + �̄�− 𝔼𝜇(𝜃) = 0

The action function �̃�(𝜃) is as follows:

• when 𝜃 ∈ [0, 𝜑−1(�̄�)), the default action 𝑎0 is chosen with probability �̄�−𝜑(𝜃) 
𝑣0−𝜑(𝜃)

and the action �̃�(𝜃) = 𝜑(𝜃) is chosen with the 
complementary probability;

• when 𝜃 ∈ [𝜑−1(�̄�),1], �̃�(𝜃) = �̄�.

We could further show that �̄� ∈ (𝔼𝜇(𝜃),1). Let 𝑓 (�̂�) = ∫ 𝜑−1(�̂�)
0 𝜑(𝜃) − �̂� 𝑑𝜇 + �̂� − 𝔼𝜇(𝜃). Then, �̄� is the solution to 𝑓 (�̂�) = 0. 𝑓 (�̂�) is 

strictly increasing:

𝑓 ′(�̂�) =

1 

∫
𝜑−1(�̂�)

1 𝑑𝜇(𝜃) > 0.

At the two points �̂� = 𝔼𝜇(𝜃) and �̂� = 1:

𝑓 (𝔼𝜇(𝜃)) = −

𝜑−1(𝔼𝜇 (𝜃))

∫
0 

𝔼𝜇(𝜃) −𝜑(𝜃) 𝑑𝜇 < 0

𝑓 (1) =

𝜑−1(1)

∫
0 

𝜑(𝜃) − 1 𝑑𝜇 + 1 − 𝔼𝜇(𝜃)

=

𝜑−1(1)

∫
0 

𝜑(𝜃) − 𝜃 𝑑𝜇 +

1 

∫
𝜑−1(1)

1 − 𝜃 𝑑𝜇 > 0

It follows that �̄� ∈ (𝔼𝜇(𝜃),1).

The condition for cases (i) and (ii) combined is 𝑢0 +𝑣20 > 0. Furthermore, the condition for the pooled action 𝜑(0) ≥ 𝔼𝜇(𝜃) is equivalent 
to (𝑣0 − 𝔼𝜇(𝜃))2 ≥ 𝑢0 + 𝑣20. Therefore,

• When (𝑣0 − 𝔼𝜇(𝜃))2 ≥ 𝑢0 + 𝑣20 > 0, the actions are pooled at �̃�∗(𝜃) = 𝔼𝜇(𝜃);
• When (𝑣0 − 𝔼𝜇(𝜃))2 < 𝑢0 + 𝑣20, the optimal action rule (�̃�∗, �̃�∗) is as characterized in part (a) of Proposition 5.

For case (iii), the principal optimally sets �̂�∗ = 𝔼𝜇(𝜃), resulting in pooled action �̃�∗(𝜃) = 𝔼𝜇(𝜃).
Proposition 5 summarizes the analysis above: the cases (𝑣0 −𝔼𝜇(𝜃))2 ≥ 𝑢0 + 𝑣20 > 0 and 𝑢0 + 𝑣20 ≤ 0 both result in the pooled action 

and are stated in part (b) of the proposition; the case (𝑣0 − 𝔼𝜇(𝜃))2 < 𝑢0 + 𝑣20 corresponds to part (a) of the proposition.

A.8. Derivations omitted in Section 4.2

A.8.1. U-shaped �̃�∗(𝜃) and �̃�∗(𝜃)
The parameters under concern are 𝑣0 = 0.38, 𝑢0 = −0.1 and 𝑔(𝜃) = 1 for all 𝜃 ∈ [0,1]. Proposition 1 still applies. We can focus on 

the class of veto mechanisms when searching for a principal’s optimal mechanism and decompose principal’s maximization problem 
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into two sequential problems (1) and (2). The solution to (1) is different when �̂� ≥ 𝑣0 and �̂� ≤ 𝑣0. And we consider the two 
cases separately.

Case I: �̂� ≥ 𝑣0 When �̂� ≥ 𝑣0, we have �̃�(𝜃) ≥ 𝑣0 for all 𝜃 ∈ [0,1]. The solution to (1) is the same as the solution for the case 𝑣0 ≤ 0:

�̃�∗(𝜃) =

{
�̂� if (𝜃 − 𝑣0)2 + 𝑢0 < 0,
max{�̂�, 𝜂(𝜃)} otherwise 

where 𝜂(𝜃) =
√
(𝜃 − 𝑣0)2 + 𝑢0 + 𝑣0. Plugging in the parameter values, we have

1. If �̂� ∈ [𝑣0,
√
0.0444 + 0.38],

�̃�∗(𝜃) =

{
�̂� if 𝜃 < 𝜃 < �̄�,√
𝜃 − 0.38)2 − 0.1 + 0.38 otherwise 

where 𝜃 = 0.38 −
√
(�̂�− 0.38)2 + 0.1 and �̄� = 0.38 +

√
(�̂�− 0.38)2 + 0.1.

2. If �̂� ∈ [
√
0.0444 + 0.38,

√
0.2844 + 0.38],

�̃�∗(𝜃) =

{
�̂� if 𝜃 < �̄�,√
(𝜃 − 0.38)2 − 0.1 + 0.38 otherwise 

where �̄� = 0.38 +
√
(�̂�− 0.38)2 + 0.1.

3. If �̂� ≥√
0.2844 + 0.38, �̃�∗(𝜃) = �̂�.

Next, we solve the maximization problem (2). The optimal �̂� is within the range �̂� ∈ [𝑣0,
√
0.0444 + 0.38] and given by the below 

FOC:

𝜃

∫
0 

𝜂(𝜃) − �̂� 𝑑𝜃 +

1 

∫̄
𝜃

𝜂(𝜃) − �̂� 𝑑𝜃 + �̂�− 1
2
= 0 (8)

where 𝜂(𝜃) =
√
(𝜃 − 0.38)2 − 0.1 + 0.38, 𝜃 = 0.38 −

√
(�̂�− 0.38)2 + 0.1 and �̄� = 0.38 +

√
(�̂�− 0.38)2 + 0.1 as calculated when solving 

(1). Solving Equation (8) numerically gives �̂�∗ ≈ 0.397, 𝜃 ≈ 0.063 and �̄� ≈ 0.697.

Case II: �̂� ≤ 𝑣0 When �̂� ≤ 𝑣0, we have �̃�(𝜃) ≤ 𝑣0 for all 𝜃 ∈ [0,1]. The solution to (1) is the same as the solution for the case 𝑣0 ≥ 1.

�̃�∗(𝜃) =

{
�̂� if (𝑣0 − 𝜃)2 + 𝑢0 < 0,
min{�̂�, 𝜑(𝜃)} otherwise 

where 𝜑(𝜃) = 𝑣0 −
√
(𝑣0 − 𝜃)2 + 𝑢0. Plugging in the parameter values, we have

1. If �̂� ∈ [0.38 −
√
0.0444, 𝑣0],

�̃�∗(𝜃) =

{
�̂� if 𝜃 < 𝜃 < �̄�,

0.38 −
√
(𝜃 − 0.38)2 − 0.1 otherwise 

where 𝜃 = 0.38 −
√
(�̂�− 0.38)2 + 0.1 and �̄� = 0.38 +

√
(�̂�− 0.38)2 + 0.1.

2. If �̂� ∈ [0.38 −
√
0.2844,0.38 −

√
0.0444],

�̃�∗(𝜃) =

{
�̂� if 𝜃 < �̄�,

0.38 −
√
(𝜃 − 0.38)2 − 0.1 otherwise 

where �̄� = 0.38 +
√
(�̂�− 0.38)2 + 0.1.

3. If �̂� ≤ 0.38 −
√
0.2844, �̃�∗(𝜃) = �̂�.

Next, we solve the maximization problem (2). Note that the optimal �̂� is within the range �̂� ∈ [0.38 −
√
0.0444, 𝑣0] and that the 

first-order derivative is positive for all �̂� ∈ [0.38 −
√
0.0444, 𝑣0 = 0.38]:

2
[ 𝜃

∫
0 

�̂�−𝜑(𝜃) 𝑑𝜃 +
1 

∫̄
𝜃

�̂�−𝜑(𝜃) 𝑑𝜃 + (1
2
− �̂�)

]
> 0.

Games and Economic Behavior 150 (2025) 215–234 

232 



X. Hu and H. Lei 

Therefore, we obtain the corner solution �̂�∗ = 𝑣0 = 0.38.

Combining the two cases, the optimal solution is obtained when �̂�∗ ≈ 0.397.

A.8.2. Deterministic optimal mechanism

We follow the same procedures as in the previous proof of Appendix A.8.1.

Case I: �̂� ≥ 𝑣0 The solution to (1) is the same as the solution for the case 𝑣0 ≤ 0.

1. If �̂� ∈ [𝑣0 = 0.5,
√
0.25 + 𝑢0 + 0.5],

�̃�∗(𝜃) =

{
�̂� if 𝜃 ≤ 𝜃 ≤ �̄�,√
(𝜃 − 0.5)2 + 𝑢0 + 0.5 otherwise 

where 𝜃 = 0.5 −
√
(�̂�− 0.5)2 − 𝑢0 and �̄� = 0.5 +

√
(�̂�− 0.5)2 − 𝑢0.

2. If �̂� ≥√
0.25 + 𝑢0 + 0.5, �̃�∗(𝜃) = �̂�.

Next, we solve the maximization problem (2). The optimal �̂� is within the range [𝑣0,
√
0.25 + 𝑢0 +0.5] and the first-order derivative 

is negative for all �̂� ∈ [𝑣0,
√
0.25 + 𝑢0 + 0.5]:

−2
[ 𝜃

∫
0 

𝜂(𝜃) − �̂� 𝑑𝜃 +

1 

∫̄
𝜃

𝜂(𝜃) − �̂� 𝑑𝜃 + (�̂�− 1
2
)
]
< 0.

Therefore, we obtain a corner solution �̂�∗ = 𝑣0 = 0.5.

Case II: �̂� ≤ 𝑣0 The solution to (1) is the same as the solution for the case 𝑣0 ≥ 1.

1. If �̂� ∈ [0.5 −
√
0.25 + 𝑢0, 𝑣0 = 0.5],

�̃�∗(𝜃) =

{
�̂� if 𝜃 ≤ 𝜃 ≤ �̄�,

0.5 −
√
(𝜃 − 0.5)2 + 𝑢0 otherwise 

where 𝜃 = 0.5 −
√
(�̂�− 0.5)2 − 𝑢0 and �̄� = 0.5 +

√
(�̂�− 0.5)2 − 𝑢0.

2. If �̂� ≤ 0.5 −
√
0.25 + 𝑢0, �̃�∗(𝜃) = �̂�.

Next, we solve the maximization problem (2). The optimal �̂� is within the range �̂� ∈ [0.5 −
√
0.25 + 𝑢0, 𝑣0] and the first-order 

derivative is positive for all �̂� ∈ [0.5 −
√
0.25 + 𝑢0, 𝑣0]:

2
[ 𝜃

∫
0 

�̂�−𝜑(𝜃) 𝑑𝜃 +
1 

∫̄
𝜃

�̂�−𝜑(𝜃) 𝑑𝜃 + (1
2
− �̂�)

]
> 0.

Therefore, we obtain a corner solution �̂�∗ = 𝑣0.

Combining the two cases, we obtain that in the solution �̂�∗ = 𝑣0. Then 𝜃∗ = 0.5 −
√
−𝑢0 and �̄�∗ = 0.5 +

√
−𝑢0. And both cases 

correspond to the veto probability:

�̃�∗(𝜃) =

{
0 if 𝜃∗ ≤ 𝜃 ≤ �̄�∗,

1 otherwise. 

Since the principal vetoes with probability 1 when 𝜃 ∈ [0, 𝜃∗) and 𝜃 ∈ (�̄�∗,1], �̃�∗(𝜃) can take any value. When 𝜃 ∈ [𝜃∗, �̄�∗], we have 
�̃�∗(𝜃) = �̂�∗ = 𝑣0.

Data availability
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